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Alternative model of dissipation in quantum mechanics
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The model of dissipation studied by Castro Neto and Caldeira [Phys. Rev. Lett. 67, 1960 (1991)] is reex-
amined. The main results for transport are derived in a simple manner without the use of Feynman path
integrals. By means of a unitary transformation, a connection is made between the model and a model
previously studied in the field of quantum dissipation. Lastly, extensions of the model are discussed.

PACS number(s): 05.30.—d, 05.40.+j

In the past several years there has been a great deal of
interest in the physics of dissipative quantum systems [1-3].
The field underwent growth during the 1980’s with the de-
velopment and application of path integral methods to the
quantum Brownian oscillator [1,2] and the spin-boson prob-
lem [2,3]. Recently, Castro Neto and Caldeira (hereafter de-
noted CNC) introduced a model for dissipation in quantum
mechanical systems [4]. Their work is based on an approxi-
mate form of a Hamiltonian which had previously been ap-
plied to the study of polaron dynamics [5,6]. CNC apply the
path integral formalism to this model Hamiltonian in their
study of the dynamics of polarons in one dimension [7], in
their work on the transport properties of solitons, [8] and to
the problem of the dynamics of particles coupled to a Lut-
tinger liquid [9]. The chief result uncovered is that the qua-
siparticle of interest undergoes a Brownian-type motion, with
a peculiar damping kernel. The model holds more than just
academic interest in that the results for the temperature de-
pendence of the mobility of the quasiparticle agree with a
previous study of the one dimensional polaron problem that
utilized a more complicated kinetic theory [10].

Since the path integral calculations lead to a damping of
the quasiparticle motion, it would be interesting to study the
dissipative model of CNC by a simple method known to lead
directly to a Langevin-type equation [11-13]. The purpose of
this brief report is threefold. First, we wish to provide a
simple and physically clear derivation of the quasiparticle
transport properties governed by the Hamiltonian of CNC
without the use of the Feynman-Vernon formalism. Sec-
ondly, we wish to show a connection between the model of
CNC, and a model of dissipation previously studied. Lastly,
we wish to point out some features of a simple extension of
the model.

We begin with the Hamiltonian [4]
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This Hamiltonian is an approximate version of a Hamil-
tonian used in the theory of polaron dynamics [5,6]. Notice
that, unlike previous studies on quantum Brownian motion
[1,11], the Hamiltonian contains a local system-bath interac-
tion, and the number of reservoir excitations is conserved.

We will be content to describe the dynamics of the qua-
siparticle to second order in the coupling constant G. This is
equivalent to the Born approximation used in the functional
integral study [4]. Note that

mi(1)=T1(1), A3)

so that we must interpret ﬁ(t) as the mechanical momentum
of the quasiparticle. We now use the method employed by
Lindenberg and West in their study of quantum Brownian
motion [11]. The Heisenberg equation of motion is found,

i(1)=2 Twal(Daw (1), @)
kk'
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Note that I';;+ is real and symmetric. The equation of motion
for the bath operators is found to be

(1)~ —iwra,(t)ﬂg G pa(1)x(1), (5)

where we have ignored the noncommutativity of the opera-
tors x(¢) and a,(z) since we are concerned with the dynam-
ics in the Born approximation limit. Equation (5) is formally
integrated, and substituted into Eq. (4). The result, to second
order in G is the operator equation
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with an operator kernel given by
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and an operator ‘‘fluctuating force” of the form
F(1)=2 Ty exp{—i(w,—wp)t}aja, . (®)
kk!

All bath operators without explicit time arguments are to be
understood as the values of the operators at t=0. We now
suppose that the bath is initially prepared in the canonical
ensemble, that is

pr(0)=exp{— BHg}/Z.

We average Eq. (6) over the initial bath state, and retain
terms in the average that contribute to second order in G,
giving,
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X cos(wy— wpr)(t— 1), (10)
and
n(wy)=[exp(Bhw)—1]7",

Note that Eq. (9) is still an operator equation for the system
operators x(¢) and x(¢), and may be averaged over an arbi-
trary system initial state without altering the form of the
equation in the Born approximation limit. Equation (9) is
identical to the equation of damping obtained by CNC using
the more involved path integral approach [4]. If a proper
generalization of the ohmic spectral density is used [4,7,8],
the quasiparticle mobility obtained from Eq. (9) agrees with
that of an earlier study on the polaron dynamics in one di-
mension [10], which also utilized a Hamiltonian of the type
1).

From Eq. (6) we may obtain the fluctuation-dissipation
relationship between the fluctuating force and the dissipative
kernel [11-13]. Consider the symmetrized correlation func-
tion,

HEMF(D+F(DE@®))=2 @y (1—7),  (11)
kk'

with
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which is related to the diffusion function D(¢) of CNC
[1,4,7,8]. The fluctuation-dissipation relation is now mani-
fest, taking the form,

m
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In the classical limit, the dissipative kernel is directly pro-

portional to the symmetrized fluctuating force correlation
function as expected,

(12)

LA k,T
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We may note that the fluctuation-dissipation relation (12)
is essentially identical to a fluctuation-dissipation relation
obtained by Cortés, West, and Lindenberg [12], for the
Hamiltonian,

P>
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In their study, the dynamics were also accounted for through
second order in W. To see the relationship between the
Hamiltonian (13) and (1), consider the unitary transforma-
tion

H=U'HU,
with
U=exp(ixfz/ﬁ). (14)

If we are again concerned with dynamics to second order in
G, we may write,

2
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which has the form (13) to first order in G. Note that in this
picture mx(¢)=p(t), so that p is in fact the quasiparticle
momentum. The unitary transformation (14) is, in spirit,
similar to the Goppert-Mayer transformation in nonrelativis-
tic quantum electrodynamics, where the interaction Hamil-
tonian p-A is transformed into r-E in the electric dipole
approximation [14]. In the case of the Hamiltonian (1), the
interaction Hamiltonian is given by pA. One can immedi-
ately infer, from the analogy to the Goppert-Mayer transfor-
mation, that the transformed interaction Hamiltonian would

be xh, which is, to first order in G, identical to the third term
on the right-hand side of Eq. (15). This shows that the two
pictures represented by the Hamiltonians (1) and (15) are in
fact identical in the weak coupling limit. Indeed, this is a
manifestation of the gauge invariance.
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For completeness, we start with Eq. (15) and use the same
procedure as before. We find the operator equation

X(t)-i-J;I%(t,T))é(T)dfr-FQ(t)x(t)=IA€(t), (16)
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Note that the form of Eq. (16) is slightly different than that
of Eq. (6). Equation (16) could be put in a more standard,
Langevin-type form by modifying the system Hamiltonian as
discussed by Lindenberg and West [11]. However, if we are
concerned only with the reduced (bath averaged) properties
of Eq. (16), then such a modification is not necessary. Our
original initial conditions for the density matrix were of the
factorized form p(0)=0(0)pg(0). In the gauge transformed
picture, the initial conditions take the form U~ !p(0)U. If we
are concerned with dynamics in the weak coupling limit, we
may again average over the cannonical ensemble of the bath
pg reducing Eq. (16) to Eq. (9). Furthermore, the fluctuation-
dissipation relation for Eq. (16) is identical to Eq. (12). This
establishes the relationship between the Hamiltonian (1) of
CNC and the Hamiltonian (13) studied by Cortés, West, and
Lindenberg [12] in the Born approximation limit.

Lastly, we would like to briefly comment on the exten-
sions of the Hamiltonian (1). If terms are included in (1) that
do not conserve the number of bath excitations, then the
modified Hamiltonian takes the form [7,8]
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with Q:‘k, == Qrrx>Qrik» =0 . The energy nonconserving
terms could correspond to the absorption or emission of
phonons by the polaron (Cerenkov process) or high-
frequency oscillations in the soliton problem. Such terms
may be easily handled with the methods employed here. Ef-
fectively, the damping kernel will contain the sum of two
terms, one term from the energy conserving portion of the
Hamiltonian that takes the form (10), and a term from the
counterrotating portion of (20) with the form [12],

2%
g(l_ 7'): ? z |Qkkr|2[n(wk)+n(wk,)+ 1]
kk'

X(wk+wkl)cos(wk+ﬂ)k/)(t_”T). (21)

Note that the Hamiltonian (19) gives a damping that does not
vanish as the temperature approaches zero.

To summarize our results, we have presented a derivation
of the transport properties of the Hamiltonian (1) in a simple
and physical manner without the use of the path integral
method. The approach utilizes the method of Lindenberg and
West [11], which leads naturally to a generalized Langevin
equation in the weak coupling limit. The relationship be-
tween the Hamiltonian (1) and the one studied by Cortés,
West, and Lindenberg [12] is demonstrated. Lastly, we have
sketched how the transport properties are modified when
counterrotating terms are included in the Hamiltonian.
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